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Abstract. Analytical expressions for the exciton-exciton interaction potentials have been 
approximatelyderived in both2o and 3o materiaisexhibiting explicit dependencesonexciton 
momentum difference. momentum transfer, electron-hole effective mass ratio and two- 
exciton state spin symmetry. Numerical calculations show that the character of the exciton- 
exciton interaction is determined by all of the above-mentioned dependences. 

1. Introduction 

Of particular importance is the exciton-exciton interaction, which has been studied in 
moreor lessdetail within different approachesin both three- [l-201 and two-dimensional 
( 3 ~  and ZD) [20-271 excited materials. Disregarding spins of electrons and holes, the 
exciton-exciton interaction is mostly repulsive. Its Fourier transforms taken at zero 
momentum transfer q = 0 and at equal momenta of colliding excitons p = p' take the 
values [2-91 and In12Dr~V;J(1-315z2/4096) [21,26,27] in the 'bulk' 
and 'planar' cases, respectively I ~ ~ ( ~ ~ )  and V3,i2,) are the 3D (ZD) exciton binding 
energy, Bohr radiusandsample volume (area)). For the practical purpose of quantitative 
comparison between theoretical calculations and experimental measurements, it is 
necessary to know the exciton-exciton interaction potential in the whole range of 
momentum transfer q and exciton momenta p, p' as well as of electron-hole effective 
mass ratio s. For example, to obtain the density-dependent exciton level shift and 
damping of a certain medium, one has to integrate expressions containing the exciton- 
exciton interaction potential over the whole range of q, p and p' with a given s (see, 
e.g., [20,24, 281). Since exact analytical evaluation of the exciton-exciton interaction 
potential is impossible, appropriate approximations must be invoked. In [20] an 
improved version of the approximation mentioned in [29] is proposed to derive explicit 
expressions for the exciton-exciton interaction potential that depend analytically on q,  
p, p' and s. Nevertheless, the spin of quasiparticles was not taken into account in [20] 
and, thus, collective phenomena such as the formation of biexcitons or electron-hole 
drop condensation, etc, could not be explained. 
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In this paper we deal with the analytical derivation of the explicit dependences of the 
exciton-exciton interaction potential not only on q,  p, p' and s but also on the spin 
symmetry of the two excitons that interact. We shall show that the character of the 
exciton-exciton interaction should be determined by all of the above variables, i.e. by 
q. p. p' ,  s and spin symmetry. 

Throughout this paper the unit system with h = c = 1 is used, where h andc are the 
Planck constant and the light velocity. 

2. Spin-dependent interaction Hamiltonian in terms of exciton operators 

Consider for simplicity a direct-gap, two-band semiconductor, which under band-to- 
band excitation comprises electrons and holes interacting between themselves via Cou- 
lomb force Fq. The original fermionic Hamiltonian of the semiconductor reads 

Heh = E Etr,?,;(k) e&,=/$ eu-,,: + 2 Ehr,n/: (k) h&,b,? h,r,,g 
4; 4! 

j (1) - 2 2 e;+*,,r,q: hp--q.r,b,g t hp*r,,? e,r,*j: . 
Gi? 

In ( I ) ,  i' Gh) and j :  (j:) label the electron (hole) total angular momentum and its 
projection on the z axis. r,, and Tih are the irreducible representations of the crystal 
symmetry group according to which the basic state vectors 

e&,cl: lo) = Ver,q: 4 lo) 

"x'r,,rg IO) = Vhr,b,g h l  10) 

(2) 

(3) 

and 

are respectively transformed. In (2) and (3), (ylhrIb1;) denote the j :  (j!) com- 
ponent of the electron (hole) wavefunction in the conduction (valence) band at the 
centre of the Brillouin zone; and e: ( h l )  creates an electron (a hole) with momentum 
k and energy Eerie,;(k) (Ehr,,hi!(k)). If the electron-hole pair is bound into the exciton 
in the state of relative motion characterized by the partners fnlm of the irreducible 
representation DI, then the basicstate vectorsof the exciton will be transformed accord- 
ing to the direct-product representation 

r,. 8 ri. @ D, = 2 e r,. . (4) 
is  

The number of? will depend on the chosen scheme of the vectorial addition between 
the three angular momenta F, jh and I. There may exist several addition schemes, 
which, however, are related to each other by unitary transformations [30]. Assume for 
definiteness that i' first couples with jh to form intermediate i'", which are then added 
to 1. This assumption permits us to build by group-theoretical methods the creation 
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operator of the exciton with usual momentum k, total angular momentum p and its 
projection j :  in the form 

(5)  

where the presence ofjeh in (5)  indicates the concrete vectorial addition scheme used, 
@ = (1 + s)-I and 

aiL,eh,a,: = v-'fi 2 sA,,,ko"h,la,j;)fnfm@ - PW eZ-p,r,e,; h;r,h,k 
pm&? 

~!,,,,;@h,ja, j ; )  = li'j:jhjPijchj:')O.ehje:Imlpj~) (6)  
1:h 

with (jaj;jbj! I j j z )  being the Clebsch-Gordan coefficients. Applying the well known 
properties of the Clebs+-Gordan coefficients helps us to verify that 

With the aid of (7) and of the ortho-normalization and completeness conditions of 
functionsf,,, we may reverse (5) into (a = 1 - @) 

e:r,,sh$jhjQ = V-112 Sf mlej? . Vh ,I -a ,j;)f;dw - Pda&, , , ! jChj i y : .  (8) 
ofm 

jehjajf 

Note that equation (8) is generalized compared with equation (10) in [19] and equation 
(7) in [20], where spins were completely ignored. 

Now, before proceeding further, some comments on excitation levels are in order. 
If the excitation level is high or very high, excitons should not be stable. They must 
undergo the Mott transition [31], yielding anelectron-hole plasma, description of which 
requires detailed corrections for self-energy, (dynamical) screening and band filling. At 
medium levels of excitation below the Mott transition, excitons may not be destroyed 
but must deviate from ideal bosons. Under this circumstance, non-bosonic approaches 
to the many-exciton system are necessitated (see, e.g., an approach in [19]). In the low 
excitation limit the non-bosonic behaviour of excitons is small, and up to order p2r6 ( p  
the exciton density) they can be treated as bosons [12] provided that their mutual 
interaction in a hypothetical bosonic subspace can be adequately formulated to take full 
account of the fermionic nature of the constitutive quasiparticles of excitons. In what 
follows we confine ourselves to the low exciton limit and imitate the rigorous, but 
simple, electron-hole pairing procedure performed in [12] to cast the original fermionic 
Hamiltonian Heh into the bosonic one H"" whose part H;? describing the interaction 
among excitons can he written as 
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where the abbreviations are NI = (n,lLml), N ;  = (ni&m[), .  . .; L1 = (llm,), 
L; = ( l imi ) ;  J ,  = (jfhj:jyz),J; = (jphjiaj[;), , . .. Functions Ud and Ucx in (11) are 
independent of spins and respectively represent 'direct' and 'exchange' inter-excitonic 
interaction mechanisms. Following [20] we write them down as 

Nguyen Bo An et a1 

It can be checked from the general formulae given in 1201 for U(') that fori = 1,2,3 they 
depend only on q whereas for i = 4,5,6 they depend also onp - p' (but not onp andp' 
separately). Therefore, denoting the differencep - p' by Q we get 

Effects caused by spins are govemed by the spin-dependent symbols Sd an Sex, which 
are sums of products of Clebsch-Gordan coefficients. Namely, they are of the forms 
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For the simplest but most significant case when all of the excitons are in the ground state 
andT = jh = 112 (as for the yellow excitonic series of Cu,O) we have Th = y, 

Sd(J iJzJ?J; )  = 6 1 i 1 , b ~ h ~  (22) 

(23) 

and 

s ' " (J IJzJ;  J;) = s y J J , J : J ; )  = s " ( J i J ; J J 1 )  = S y J p ; J I J z ) .  

Then equation (9) looks quite simple: 

In (22)-(24) and from now on for brevity we drop all the indices Ni and L, in UdteX) 
and .Sd(-) understanding that they are '100' and '00' for excitons in the ground state, 
respectively. 

At this point it can be noted that though many-exciton Hamiltonians have been 
found by many authors [5,7-9,11-13,20] using different methods of derivation, those 
given here by equations (9) and (24) take into account explicitly for the first time the 
spin of the quasiparticles. In the next section we shall show that for small momenta the 
character of the exciton-exciton interaction is essentially determined by the symmetry 
of the spin function of two interacting excitons, but for larger momenta the q. Q and s 
dependences will give important influences. 

3. Spin-dependent exciton-exciton interaction potential 

In this section we shall derive analytical expressions for the exciton-exciton interaction 
potential, which is anticipated to be less than the exciton binding energy. That means 
that interactions between excitons do not destroy them to generate free electron-hole 
pairs. For the S-type excitons and with the spin-osbit coupling neglected, excitons may 
belong to two kinds: the para- 0'" = j ;  = 0) and the ortho-exciton 0'" = 1; j :  = 0 ,  +1). 
Denote by Iklk2fjbjjz) the zero-order approximation state vector of two excitons, one 
of which possesses momentumk, ( k z ) ,  spinja (jb) and the other has momentum k,  (k,), 
spin j b  0'") and whose total spin and its projection equal j and j , .  Owing to group- 
theoretical methods, the table for the values of Clebsch-Gordan coefficients and the 
symmetry requirements for a two-boson system, we can construct the spin-symmetric 
possible two-exciton state vectors Iklk, 00 OO), Iklkz 10 lm) (m = 0, tl), Iklk2 11 2m) 
( m = O ,  +1, +2),iklk211 lm)(m = 0 ,  +l)and~k,k,llOO).Foragivenvalueofm,say, 
m = 1, we have 

Ikl k2 00 00) = d,wallm 10) 

Iklk, 10 11) = (1/d2)(a:l,laizw + a&malzil)lO) 

I k 1 h  11 21) = (1 /d2) (a l l~~ai$~ + ~ ~ l l d z d ~ o )  
l k l h  11 11) = (1/d2)(a~l11d210 - al,Ioa&11)10) 

(25) 

(26) 

(27) 

(28) 
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bib 11m)= ( ~ / ~ ~ ) ( Q & I I Q , & I - I  - n,$ion&o + Q ~ ~ i - i Q & i i ) ~ o ) .  (29) 

'Sandwiching' Hamiltonian (22) between two-exciton state vectors and accounting for 
the definition (21). which gives 

(symbol equalities {J,, Jz} = {ab, cd} mean eitherJl = ab, J ,  = cdor J ,  = cd, J, = ab), 
we are able to calculate the various necessary matrix elements that would offer cor- 
responding dependences on Q,  q and s of the interaction between: 

(i) two para-excitons 

W c - a ( . .  . ) = O , + q , p '  -qOOOOIH~~'~ipp'OOOO)=Ud(q) + Ud(Qtq)  

+ 1IUYQ. 4 )  + WQ, -Q - q)1 (31) 

(ii) an ortho- and a para-exciton 

w " - ~ ( .  . .) = 4 2 ( p  + q.p' - q IO lmlHf;aIpp' 10 Im) = Ud(q)  + U ~ ( Q  + q )  
m = O . i l  

+ Uex(Q. q) + U'"(Q. -Q - q )  (32) 

(iii) two ortho-excitons with j = 2 

WO-O.,=Z(. , .) = f (P+q,P'-q112mlH:,;*lpp'112m~- ..) 
m r 0. e l ,  t2 

(33) 

(iv) two ortho-excitons with j = 1 

(v) and two ortho-excitons with j = 0 

W O - O . ~ = O ( .  . . ) = ( ~ + 4 , P ' - q 1 1 0 0 1 H ~ ~ ~ ~ p p ' 1 1 0 0 ) =  Ud(q)  + U d ( Q + q )  

- 4[UeYQ, q )  + UYQ, -Q - n)l (35) 

where(. . .) ( p  - p' = Q , q ) .  

Analytical differences in equations (31) to (35) clearly stress the role that the spin 
symmetry of the two-exciton state vectors plays in connection with the character of 
exciton-exciton mutual interaction. To see things quantitatively, we have to evaluate 
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the expressions (31)-(35). Such a task might be done an.alytically just in a proper 
approximation, which will be presented in the forthcoming section. 

4. Approximation for analytical calculation 

Mathematically exciton-exciton interaction potentials (31)-(35) depend on Ud and Uex 
in (12) and (13), which are in turndetermined by U(‘) (i = 1-6) in (14)-(19). Therefore, 
knowing the way to calculate U(‘) is necessary. However, being complicated functionals 
of fncm, in principle U(’) cannot be analytically calculated for arbitrary momenta and 
electron-hole mass ratio [SI. Even in the case of S-type exciton wavefunctions and a 
certain value ofs, numerical evaluations of (I(‘) take a very long computer time because 
of the iteration process that is needed to resolve the seeming logarithmic divergence in 
order to get results with a desired accuracy [lo]. For that reason, many authors have 
evaluated thepotentialsonlyinlimjtingcases, namelye = q = 0[2-8,21,24-26] (in this 
case the s dependence disappears [ZO]) or Q = 0, q # 0, s = 0 [8], 1/8 and 1 [4]. To 
calculate U(‘) analytically throughout the whole range of Q, q and s one has to resort to 
an appropriate approximation. In [29] an approximation was suggested, which replaced 
fractional functions by exponent ones. This replacement resultsin more rapiddecreasing 
of exciton wavefunctions with increasing momentum in the large momentum region. It 
leads, for example, to some modification of the far tails of the exciton luminescence 
zone but does not significantly change qualitative behaviours. The criterion of validity 
ofthe approximation is kOT/Z2D(3D) Q cup, wherek,and Tare theBoltzmannconstantand 
temperature (see [29]). Such an approximation works very well in the small momentum 
limit. Yet, regarding the behaviours of the approximated exciton wavefunctions in the 
whole range of momentum, they do not satisfy the physically meaningful normalization 
condition. Here, as in [20], we improve this shortcoming by multiplying the approxi- 
mated (exponent) exciton wavefunctions by constants Cnlm that again guarantee that the 
functions become normalized. Calm prove to be distinctive for different exciton relative 
motion states, i.e. for different nlm. For the 1s-type functions, we have 

wavefunctions in the ground state read 
cZD Is - - (3/2)@ and C:&’ = x ” ~ .  Consequently, the corresponding ZD and 3D exciton 

The advantage of the approximations (36) and (37) rests in the fact that they enable us 
to integrate (14)<19) analytically, avoiding long computer time numerical multifold 
integrations. Putting (36) and (37) together with the ZD and 3D Coulomb forces F:D = 
2xe2/qVZD and F:D = 4 r e ’ / ~ q ’ V ~ ~  (e and E are the electron charge and the static 
dielectric constant) into (14)-(19) and then replacing in them sums by integrals, we have 
performed the analytical integrations for vc‘) [ZO]. Substituting them into (12) and 
(13) gives Ud and Uex in forms that look quite easy to handle for further theoretical 
calculations: 

U?&) = (2nGzD/qr2d [exp(-3cuzqzr?D/4) - exp(-3P2q’r:D/4)I2 (38) 

(39) 2 2 2  2 2 2  
U?D(q) = (8X‘%~/q*r?i~)[exP(-@ 4 r3D) - exp(-p 4 r3D)12 
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I - 3 e~p{-2r;~[cu?(Q + 4)' + @'q2]} I exp(2riDP 2 ? ? &  q x ) 
0 

I 
- 3 e~p{-2r:~[P'(Q + q)? + azq2]} I exp(2r:,n2q2x2) dx) (41) 

0 

5. Graphical demonstration 

As follows straightforwardly from (31)-(35) and from (38)-(41). the Q, q and s (i.e. 01, 

@) dependences of the exciton-exciton interaction potentials are analytically explicit. 
This allows us easily to program a computer to plot the variation of the potentials 
throughout the whole range of Q, p ands. Relativecontributions fromdifferent physically 
possible mechanisms U(" (i = 1-6) to the spin-independent exciton-exciton interaction 
were clear in (201 (see, e.g., figures 2, 3, 5 and 6 therein) in respect of the q and s 
dependences in both ZD and 30 cases. The spinless quasiparticle treatment in [20] is in a 
sense equivalent to that of a para-exciton gas in which excitons with equal momenta 
always repel one other if their momentum transfer is zero. We shall show that with 
quasiparticle spins being taken into consideration the character of the exciton-exciton 
interaction might be either repulsive or attractive depending delicately not only on the 
spin symmetry of two-exciton states but also on all of the variables entering formulae 
(31)-(35). For convenience in presenting figure axis titles we introduce the following 
normalized dimensionless notations: WD( pa-pa) G;JWz!n; WD(or-pa) = 

0) = G;J WE,o; MD(pa-pa) = G;JW:!x;. . .; qr[2D] = qrZD; Qr[ZD] = erzD;.  . . . 
We have plotted many figures, some of which will be shown below. Figure 1 rep- 

resents ZD normalized interaction potentials between two para-excitons with equal 

G-IwZD 2D ~ n r  . WZD(or-or, 2) G;JWE,r'; WD(or-or, 1) = G d W E , , ;  WD(or-or, 
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Figure 1. 2D normalized interaction potentials 
between two para-excitons with equal momenta 
versus electron-hole mass ratios and momentum 
transfer qrm, 

Figure 2. The same as in figure 1 but between an 
ortho-excitonandapara-exciton (orbetween two 
ortho-excitons with total spin j = 2). 

Figure 3. The same as in figure 1 but between two 
ortho-excitons with total spin j = 0. 

momenta as functions of s and of qr20. At 4rm = 0 all the potentials take an equal 
positive value independent ofs. For small decrease in qr,,potential magnitudes decrease 
quite rapidly but still remain positive. When qr2D is increasing further, the potentials 
begin to behave differently in accordance with s. By direct inspection of figure 1 one sees 
that fors = 0.9 (0.72 or 0.54) the potential vanishes at qr, = 0.84 and then becomes 
more and more negative, reaching a minimum at qr2D = 1.66 (1.55 or 1.50). After that 
it increases again and, conserving the sign, tends to zero for qr2D+ ( ~ 1  (in fact for qr,, 
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Figure 4. 20 normalized interaction potentials between two para-excitons versus exciton 
momentum difference Qrio and momentum transfer qrm. The case ofs = 0.2 and of geo- 
metricalconfiguration Q 1 9. 

larger than 4). Fors = 0.36 there appears an interval of 9" ranging from 0.85 to 2.00 
inside (outside) of which the interaction is attractive (repulsive). The potential signs in 
the case of s = 0.18 and 0 are, however, always positive in the whole domain of 
The comments made clearly indicate the role not only of spin combination symmetry 
but also of momentum transfer and electron-hole mass ratio in determining the exciton- 
exciton interaction ChWdCter. Similar comments hold for interaction potentials between 
an ortho-exciton and a para-exciton and between two ortho-excitons with total spin 
j = 2 (see figure 2). In figure 3 the opposite situation happens when two ortho-excitons 
with equal momenta and total spin j = 0 attract each other for small qrID and arbitrary 
s. With a given relatively small value of s, attraction might turn into repulsion if 9 r 2 ~  
increases properly. For relatively large s (see, e.g., curves with s = 0.72 and 0.90 in 
figure 3) are negative for any qr2D. Crudely speaking, figures 1 and 3 look upside 
down. As to W E , , = ,  it identically vanishes for any q and s if Q = 0 (see (34)). 

The q and Q dependences of vD(3D) can be plotted for s and the angle between 
vectors q and Q fixed as parameters. They are represented in figures 4 to 7 respectively 

one can observe from figure 7 that WzEb.l(O, q )  = 0. 
As for the 3~ figures (not shown) they look, for the reason explained in [m, 241, 

qualitatively quite similar to the corresponding 2D ones, except for the fact that the 
exciton-exciton interaction potentials in the 3D case are remarkably enhanced as com- 
pared with those in the ZD one. The binding energy of a 2D exciton is, on the contrary, 
four times larger than that of a 3D one. 

6. Conclusion and discussion 

Summing up the results we have approximately derived analytical expressions of the 
exciton-exciton interaction potentials in both ZD and 3D materials, which depend 

for W z s ,  W?', (WE,,=*) ,  WW,,=, 2 0  and WE,,=, fors = 0.2 and q 1 Q. As it must be, 
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FigureS.The sameasin figure4 but between anortho-exdton andapara-exciton(or between 
tWo ortho-excitons with total spin j = 2). 

Figure 6. The same as in figure 4 but between two ortho-excitons with total s p h j  = 0 

explicitly on exciton momentum difference, momentum transfer, electron-hole mass 
ratio and two-exciton state spin symmetry. Our results hold on the basis of the concept 
of para- and ortho-excitons, which is valid when the para-ortho exciton splitting is 
greater than the exciton-exciton interaction energy. Such a condition is met, for 
example, in RbBr, KBr, NaBr or for the yellow excitonic series in Cu$. While the 3D 
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Figure 7. The same as in figure 4 but between two ortho-excitons with total spin j = 1 

results suit 'bulk' media, the 2D ones could be applicable to 'planar' excitons at, for 
example, the Tamm surface or at the boundary between a crystal and vacuum. In the 
latter situation the static dielectric constant E screening the Coulomb force should be 
replaced by ( E  + 1)/2 [32]. The ZD results could also be generaked for a more realistic 
quasi-zo structure, a quantum wellone. which, of course, must include many other effects 
such as well and barrier width dependences, finite barrier height, in-plane correlation of 
electrons and holes, hole mass anisotropy, image charges, etc. The role that the exciton- 
exciton interaction plays in causing bistability [14, 161 and anomalies of polariton 
dispersion curves [15,18] was considered. In [17], we used a non-bosonic approach to 
propose a possible method for determining the effective exciton-exciton interaction 
constant by measuring dispersion cuwes of the lower polariton energy branches under 
different levels of excitation. Nevertheless, account of spin was still omitted in all papers 
quotedabove. We hope that taking intoaccount thequasipartidespin might bringabout 
new results to those in [15-191, as this paper does with respect to [20]. 
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